YES 1.795 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/empty.hs
H-Termination of the given Haskell-Program with start terms could successfully be proven:



HASKELL
  ↳ IFR

mainModule Main
  ((properFraction :: Float  ->  (Int,Float)) :: Float  ->  (Int,Float))

module Main where
  import qualified Prelude



If Reductions:
The following If expression
if primGEqNatS x y then Succ (primDivNatS (primMinusNatS x y) (Succ y)) else Zero

is transformed to
primDivNatS0 x y True = Succ (primDivNatS (primMinusNatS x y) (Succ y))
primDivNatS0 x y False = Zero



↳ HASKELL
  ↳ IFR
HASKELL
      ↳ BR

mainModule Main
  ((properFraction :: Float  ->  (Int,Float)) :: Float  ->  (Int,Float))

module Main where
  import qualified Prelude



Replaced joker patterns by fresh variables and removed binding patterns.
Binding Reductions:
The bind variable of the following binding Pattern
frac@(Float vv vw)

is replaced by the following term
Float vv vw



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
HASKELL
          ↳ COR

mainModule Main
  ((properFraction :: Float  ->  (Int,Float)) :: Float  ->  (Int,Float))

module Main where
  import qualified Prelude



Cond Reductions:
The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
HASKELL
              ↳ NumRed

mainModule Main
  ((properFraction :: Float  ->  (Int,Float)) :: Float  ->  (Int,Float))

module Main where
  import qualified Prelude



Num Reduction: All numbers are transformed to thier corresponding representation with Pos, Neg, Succ and Zero.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ NumRed
HASKELL
                  ↳ Narrow

mainModule Main
  (properFraction :: Float  ->  (Int,Float))

module Main where
  import qualified Prelude



Haskell To QDPs


↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
QDP
                        ↳ QDPSizeChangeProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primPlusNat(Succ(wv3000), Succ(wv400)) → new_primPlusNat(wv3000, wv400)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
QDP
                        ↳ QDPSizeChangeProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primMulNat(Succ(wv3100)) → new_primMulNat(wv3100)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ QDPSizeChangeProof
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primMinusNat(Succ(wv3000), Succ(wv400)) → new_primMinusNat(wv3000, wv400)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ QDPSizeChangeProof
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primMinusNatS(Succ(wv210), Succ(wv220)) → new_primMinusNatS(wv210, wv220)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS0(wv21, wv22, Zero, Zero) → new_primDivNatS00(wv21, wv22)
new_primDivNatS0(wv21, wv22, Succ(wv230), Succ(wv240)) → new_primDivNatS0(wv21, wv22, wv230, wv240)
new_primDivNatS00(wv21, wv22) → new_primDivNatS(new_primMinusNatS0(wv21, wv22), Succ(wv22))
new_primDivNatS(Succ(Succ(wv30000)), Succ(wv31000)) → new_primDivNatS0(wv30000, wv31000, wv30000, wv31000)
new_primDivNatS0(wv21, wv22, Succ(wv230), Zero) → new_primDivNatS(new_primMinusNatS0(wv21, wv22), Succ(wv22))
new_primDivNatS(Succ(Zero), Zero) → new_primDivNatS(new_primMinusNatS2, Zero)
new_primDivNatS(Succ(Succ(wv30000)), Zero) → new_primDivNatS(new_primMinusNatS1(wv30000), Zero)

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(wv220)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS1(wv30000) → Succ(wv30000)
new_primMinusNatS0(Succ(wv210), Succ(wv220)) → new_primMinusNatS0(wv210, wv220)
new_primMinusNatS0(Succ(wv210), Zero) → Succ(wv210)
new_primMinusNatS2Zero

The set Q consists of the following terms:

new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Succ(x0), Zero)
new_primMinusNatS1(x0)
new_primMinusNatS2
new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Zero)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 1 less node.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ AND
QDP
                              ↳ UsableRulesProof
                            ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS(Succ(Succ(wv30000)), Zero) → new_primDivNatS(new_primMinusNatS1(wv30000), Zero)

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(wv220)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS1(wv30000) → Succ(wv30000)
new_primMinusNatS0(Succ(wv210), Succ(wv220)) → new_primMinusNatS0(wv210, wv220)
new_primMinusNatS0(Succ(wv210), Zero) → Succ(wv210)
new_primMinusNatS2Zero

The set Q consists of the following terms:

new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Succ(x0), Zero)
new_primMinusNatS1(x0)
new_primMinusNatS2
new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Zero)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ AND
                            ↳ QDP
                              ↳ UsableRulesProof
QDP
                                  ↳ QReductionProof
                            ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS(Succ(Succ(wv30000)), Zero) → new_primDivNatS(new_primMinusNatS1(wv30000), Zero)

The TRS R consists of the following rules:

new_primMinusNatS1(wv30000) → Succ(wv30000)

The set Q consists of the following terms:

new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Succ(x0), Zero)
new_primMinusNatS1(x0)
new_primMinusNatS2
new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Zero)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Succ(x0), Zero)
new_primMinusNatS2
new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Zero)



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ AND
                            ↳ QDP
                              ↳ UsableRulesProof
                                ↳ QDP
                                  ↳ QReductionProof
QDP
                                      ↳ RuleRemovalProof
                            ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS(Succ(Succ(wv30000)), Zero) → new_primDivNatS(new_primMinusNatS1(wv30000), Zero)

The TRS R consists of the following rules:

new_primMinusNatS1(wv30000) → Succ(wv30000)

The set Q consists of the following terms:

new_primMinusNatS1(x0)

We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

new_primDivNatS(Succ(Succ(wv30000)), Zero) → new_primDivNatS(new_primMinusNatS1(wv30000), Zero)

Strictly oriented rules of the TRS R:

new_primMinusNatS1(wv30000) → Succ(wv30000)

Used ordering: POLO with Polynomial interpretation [25]:

POL(Succ(x1)) = 1 + 2·x1   
POL(Zero) = 0   
POL(new_primDivNatS(x1, x2)) = x1 + x2   
POL(new_primMinusNatS1(x1)) = 2 + 2·x1   



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ AND
                            ↳ QDP
                              ↳ UsableRulesProof
                                ↳ QDP
                                  ↳ QReductionProof
                                    ↳ QDP
                                      ↳ RuleRemovalProof
QDP
                                          ↳ PisEmptyProof
                            ↳ QDP

Q DP problem:
P is empty.
R is empty.
The set Q consists of the following terms:

new_primMinusNatS1(x0)

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ AND
                            ↳ QDP
QDP
                              ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS0(wv21, wv22, Zero, Zero) → new_primDivNatS00(wv21, wv22)
new_primDivNatS0(wv21, wv22, Succ(wv230), Succ(wv240)) → new_primDivNatS0(wv21, wv22, wv230, wv240)
new_primDivNatS(Succ(Succ(wv30000)), Succ(wv31000)) → new_primDivNatS0(wv30000, wv31000, wv30000, wv31000)
new_primDivNatS00(wv21, wv22) → new_primDivNatS(new_primMinusNatS0(wv21, wv22), Succ(wv22))
new_primDivNatS0(wv21, wv22, Succ(wv230), Zero) → new_primDivNatS(new_primMinusNatS0(wv21, wv22), Succ(wv22))

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(wv220)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS1(wv30000) → Succ(wv30000)
new_primMinusNatS0(Succ(wv210), Succ(wv220)) → new_primMinusNatS0(wv210, wv220)
new_primMinusNatS0(Succ(wv210), Zero) → Succ(wv210)
new_primMinusNatS2Zero

The set Q consists of the following terms:

new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Succ(x0), Zero)
new_primMinusNatS1(x0)
new_primMinusNatS2
new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Zero)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ AND
                            ↳ QDP
                            ↳ QDP
                              ↳ UsableRulesProof
QDP
                                  ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS0(wv21, wv22, Zero, Zero) → new_primDivNatS00(wv21, wv22)
new_primDivNatS0(wv21, wv22, Succ(wv230), Succ(wv240)) → new_primDivNatS0(wv21, wv22, wv230, wv240)
new_primDivNatS(Succ(Succ(wv30000)), Succ(wv31000)) → new_primDivNatS0(wv30000, wv31000, wv30000, wv31000)
new_primDivNatS00(wv21, wv22) → new_primDivNatS(new_primMinusNatS0(wv21, wv22), Succ(wv22))
new_primDivNatS0(wv21, wv22, Succ(wv230), Zero) → new_primDivNatS(new_primMinusNatS0(wv21, wv22), Succ(wv22))

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(wv220)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(wv210), Succ(wv220)) → new_primMinusNatS0(wv210, wv220)
new_primMinusNatS0(Succ(wv210), Zero) → Succ(wv210)

The set Q consists of the following terms:

new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Succ(x0), Zero)
new_primMinusNatS1(x0)
new_primMinusNatS2
new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Zero)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primMinusNatS1(x0)
new_primMinusNatS2



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ AND
                            ↳ QDP
                            ↳ QDP
                              ↳ UsableRulesProof
                                ↳ QDP
                                  ↳ QReductionProof
QDP
                                      ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS0(wv21, wv22, Zero, Zero) → new_primDivNatS00(wv21, wv22)
new_primDivNatS00(wv21, wv22) → new_primDivNatS(new_primMinusNatS0(wv21, wv22), Succ(wv22))
new_primDivNatS(Succ(Succ(wv30000)), Succ(wv31000)) → new_primDivNatS0(wv30000, wv31000, wv30000, wv31000)
new_primDivNatS0(wv21, wv22, Succ(wv230), Succ(wv240)) → new_primDivNatS0(wv21, wv22, wv230, wv240)
new_primDivNatS0(wv21, wv22, Succ(wv230), Zero) → new_primDivNatS(new_primMinusNatS0(wv21, wv22), Succ(wv22))

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(wv220)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(wv210), Succ(wv220)) → new_primMinusNatS0(wv210, wv220)
new_primMinusNatS0(Succ(wv210), Zero) → Succ(wv210)

The set Q consists of the following terms:

new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Succ(x0), Zero)
new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Zero)

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


new_primDivNatS00(wv21, wv22) → new_primDivNatS(new_primMinusNatS0(wv21, wv22), Succ(wv22))
new_primDivNatS(Succ(Succ(wv30000)), Succ(wv31000)) → new_primDivNatS0(wv30000, wv31000, wv30000, wv31000)
new_primDivNatS0(wv21, wv22, Succ(wv230), Zero) → new_primDivNatS(new_primMinusNatS0(wv21, wv22), Succ(wv22))
The remaining pairs can at least be oriented weakly.

new_primDivNatS0(wv21, wv22, Zero, Zero) → new_primDivNatS00(wv21, wv22)
new_primDivNatS0(wv21, wv22, Succ(wv230), Succ(wv240)) → new_primDivNatS0(wv21, wv22, wv230, wv240)
Used ordering: Polynomial interpretation [25]:

POL(Succ(x1)) = 1 + x1   
POL(Zero) = 0   
POL(new_primDivNatS(x1, x2)) = x1   
POL(new_primDivNatS0(x1, x2, x3, x4)) = 1 + x1   
POL(new_primDivNatS00(x1, x2)) = 1 + x1   
POL(new_primMinusNatS0(x1, x2)) = x1   

The following usable rules [17] were oriented:

new_primMinusNatS0(Succ(wv210), Zero) → Succ(wv210)
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Zero, Succ(wv220)) → Zero
new_primMinusNatS0(Succ(wv210), Succ(wv220)) → new_primMinusNatS0(wv210, wv220)



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ AND
                            ↳ QDP
                            ↳ QDP
                              ↳ UsableRulesProof
                                ↳ QDP
                                  ↳ QReductionProof
                                    ↳ QDP
                                      ↳ QDPOrderProof
QDP
                                          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS0(wv21, wv22, Zero, Zero) → new_primDivNatS00(wv21, wv22)
new_primDivNatS0(wv21, wv22, Succ(wv230), Succ(wv240)) → new_primDivNatS0(wv21, wv22, wv230, wv240)

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(wv220)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(wv210), Succ(wv220)) → new_primMinusNatS0(wv210, wv220)
new_primMinusNatS0(Succ(wv210), Zero) → Succ(wv210)

The set Q consists of the following terms:

new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Succ(x0), Zero)
new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Zero)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ AND
                            ↳ QDP
                            ↳ QDP
                              ↳ UsableRulesProof
                                ↳ QDP
                                  ↳ QReductionProof
                                    ↳ QDP
                                      ↳ QDPOrderProof
                                        ↳ QDP
                                          ↳ DependencyGraphProof
QDP
                                              ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS0(wv21, wv22, Succ(wv230), Succ(wv240)) → new_primDivNatS0(wv21, wv22, wv230, wv240)

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(wv220)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(wv210), Succ(wv220)) → new_primMinusNatS0(wv210, wv220)
new_primMinusNatS0(Succ(wv210), Zero) → Succ(wv210)

The set Q consists of the following terms:

new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Succ(x0), Zero)
new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Zero)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ AND
                            ↳ QDP
                            ↳ QDP
                              ↳ UsableRulesProof
                                ↳ QDP
                                  ↳ QReductionProof
                                    ↳ QDP
                                      ↳ QDPOrderProof
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ UsableRulesProof
QDP
                                                  ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS0(wv21, wv22, Succ(wv230), Succ(wv240)) → new_primDivNatS0(wv21, wv22, wv230, wv240)

R is empty.
The set Q consists of the following terms:

new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Succ(x0), Zero)
new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Zero)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Succ(x0), Zero)
new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Zero)



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ AND
                            ↳ QDP
                            ↳ QDP
                              ↳ UsableRulesProof
                                ↳ QDP
                                  ↳ QReductionProof
                                    ↳ QDP
                                      ↳ QDPOrderProof
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ UsableRulesProof
                                                ↳ QDP
                                                  ↳ QReductionProof
QDP
                                                      ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS0(wv21, wv22, Succ(wv230), Succ(wv240)) → new_primDivNatS0(wv21, wv22, wv230, wv240)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: